

A Soluble Polymer-Supported Triflating Reagent: A High-Throughput Synthetic Approach To Aryl and Enol Triflates

Anita D. Wentworth, Paul Wentworth, Jr.,* U. Faruk Mansoor and Kim D. Janda*

Supporting Information

Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.

General Procedures (Synthesis). As described previously (Lo, C.-H. L.; Wentworth Jr., P.; Jung, K. W.; Yoon, J.; Ashley, J. A.; Janda, K. D. *J. Am. Chem. Soc.* **1997**, *119*, 10251-10252). *N*-Phenyltrifluoromethansulfonimide was purchased from Aldrich Chemical Co. and used without further purification.

Regioselective Enol Triflate Formation.

Typical Experimental Procedure, As For Cyclohexanone enol triflate (Wulff, W. D. *et al J. Org. Chem.* **1986**, *51*, 279). To a vigorously stirred solution of LDA (0.4 mL, 2 M in THF) in dimethoxyethane (DME, 2.5 mL) at -78 °C, was added a solution of freshly distilled cyclohexanone (0.7 mmol) in DME (2.5 mL). The resultant mixture was stirred for 2 h at -78 °C, then a cold (-78 °C) suspension of **1** (1.5 g, 0.9 mmol) in DME (10 mL) was added dropwise. The reaction mixture was then allowed to warm to 0 °C at which point the mixture becomes homogeneous. The resulting solution was stirred for 8 h at that temperature, then concentrated to half volume *in vacuo* and added dropwise to vigorously stirring diethyl ether (150 mL). The resulting precipitate was removed by filtration and the mother liquor was concentrated to dryness to give a pale yellow residue. This residue was dissolved in dichloromethane (0.5 mL), added to a silica plug and the enol triflate was eluted with dichloromethane. The solvent was removed *in vacuo* to give the enol triflate as a colorless oil (153 mg, 95 %). The product possessed satisfactory spectral data (Wulff, W. D. *et al J. Org. Chem.* **1986**, *51*, 279).